Po3din 3. [MoedHarnHs 3HaHHEBUX [yughpoBux mexHonoeail

VYIK 004.04;004.043

DOI: 10.32626/2307-4507.2022-28.76-80

Tetiana Pylypiuk!, Valeria Sukmaniuk?
Kamianets-Podilskyi National Ivan Ohiienko University
e-mail: 'pylypyuk.tetiana@kpnu.edu.ua, *kn1b20.sukmaniuk@kpnu.edu.ua; ORCID: '0000-0002-4676-9830

STUDY OF ALGORITHMS FOR SORTING INFORMATION IN DIFFERENT TYPES ARRAYS

The article is devoted to the research of sorting algorithms for different types of arrays orderliness: unordered,

almost ordered, reverse-ordered.

The authors formulated the sorting problem and presented its mathematical basis.

The authors considered the several popular algorithms for sorting arrays of information and their modifications:
“bubble” sorting, “odd-even” sorting, “comb” sorting, insertions, inclusion, selection; provided a brief description of
the selected algorithms for a better understanding of the principle of their work; conducted a study of the applicability
of these algorithms for different types of arrays orderliness and performed their comparative analysis in execution

time, number of mileages and iterations.

For a better comparison, different arrays dimensions were used: 10, 100, 500, 1000, 2000, 5000 and 10000 ele-
ments. The arrays were filled with random numbers, which were generated by the appropriate function, which allowed
each of the algorithms to be evaluated fairly. The traditional sorting criterion was chosen — by growth.

The authors also carried out a comparative analysis of the applicability of one or another algorithm for different
types of the initial (input) data orderliness. Relevant conclusions have been made.

Key words: array, algorithm, orderliness, random numbers, execution time, mileage, iteration, sorting.

Introduction. It is often necessary to work with in-
formation in the form of an arbitrary set of values, that is
fields, in practice. Most often, the information is presented
in an array. An array is a finite named sequence of values
of the same type, which differ by a sequence number (ar-
ray index). Array data processing is simplified if the data
is ordered (sorted).

There are dozens of sorting algorithms today. It's im-
possible to identify one perfect algorithm among all such
algorithms because:

— different algorithms are optimal for different data sets
and data types;

— some algorithms are easy to implement and are well
suited for explaining sorting principles, others for
practical implementation;

— some algorithms are better used for process large data
sets, others have proven themselves better for small
volumes of information;

— some algorithms are better to use for unordered data,
others for almost ordered or reverse ordered data.

When we must choose one or another sorting algo-
rithm, it's also necessary to consider it optimization in
processor cycles terms and speed, which is extremely im-
portant for processing large volumes of information.

The authors considered several sorting algorithms and
conducted a comparative analysis of them in terms of speed,
number of runs and iterations in this article. An analysis of
the applicability of one or another algorithm for different
types of initial (input) data ordering was also carried out.

The main part. For the most general case, the sorting
poblem is formulated as follows: there is some unordered
input set of keys, and it is necessary to obtain a set of this
keys, sorted by increasing or decreasing order [1].

Let's formulate the mathematical basis of sorting.

There is a sequence of n numbers (q;, a,,...,a,) at
the beginning of the algorithm (algorithm input).

Thetaskis: to permutethe input sequence insuch away
that a) <ao) S...Sag, (Orayg) 2 ;) 2... 2 dy,)-
Here 7 is the permutation of the sequence of numbers (al-
gorithm output).

76

The input sequence is most often represented as an
n-element array, although it can also have another repre-
sentation, for example, as a linked list.

To implement sorting algorithms of various types ar-
rays ordering let's give a brief description of the selected
algorithms to understand the principle of their operation.
The program codes for the implementation of the main
algorithms can be found, for example, in [2, c. 47-55; 3,
c. 25-49].

1) “Bubble” sort (or exchange sort) is one of the
simplest sorting algorithms. The principle of operation is
to compare neighbouring elements, viewing them from
left to right. In several passes, the algorithm sorts the array
by increasing or decreasing key values, depending on the
specified criterion, swapping the elements if they are not
positioned correctly. In the second pass, these operations
are performed on the elements starting from the first and
ending with the (n-1)th element, in the third — from the
first to the (n-2)th element, etc. Sorting of the array will
be completed when there is no permutation of the array
elements during the pass.

2) Cocktail sort algorithm is one of the varieties of
“bubble” sorting, but with one difference that makes the
work much easier. This difference is in the algorithm di-
rection. The “bubble” algorithm proceeds only from left to
right, starting over when the array runs out. Cocktail sort
algorithm works in two directions. Viewing the array also
starts from left to right, swapping elements if it's neces-
sary, but if is the end of the array, viewing does not start
over, but reverses from right to left. So it speeds things
up a bit.

3) An odd-even sort, also known as brick sort, is a
relatively simple sorting algorithm. It is often compared
to a “bubble” as it has many similar characteristics. The
algorithm, just like the “bubble”, reads data from left to
right, swapping elements to the appropriate criterion, but
has a larger step. The “bubble” compares the first element
with the second, the second with the third, etc. In the odd-
even sorting algorithm, the first pass compares an odd el-
ement with the adjacent even element (the first with the
second, the third with the fourth, the fifth with the sixth,

© INunumiok T. M., Cykmaniok B. C., 2022

8 3a06e3neqerHi AKkicHO20 HaBYaHHS axiBus i3uKO-MeXHON02/4HO20 NPOinto

etc.), in the second pass the even element with the next
odd one (the second with third, fourth and fifth, etc.). Then
the process starts over, odd with even, then even with odd,
hence the name of the odd-even algorithm. The sorting
algorithm ends when no change has occurred in two such
passes. This means that the array is sorted.

4) Comb sort algorithm is a modification of the “bub-
ble” algorithm, which was developed in 1980 by Wlodek
Doboshevych and popularized in 1991 thanks to the Byte
Magazine. The main idea is to prevent the situation where
small values remain at the end of the array for along time if
you want to sort the array in ascending order. The essence
of the algorithm is to take a sufficiently large distance be-
tween elements and gradually reduce it. For example, for
a better understanding: in the first run it will be a compari-
son of the first and last element, in the second — the first
and penultimate, second and last, etc. until the distance
becomes such that neighbouring elements are compared
and no permutation occurred during the algorithm run. It's
advised not to take any value of the gap between the ele-
ments, but taking into account a certain value, called the
reduction factor, which is equal to 1.247. This is the opti-
mal value that was found through many experiments with
different values. At first, we need to take a step that will
be equal to the rounded value of the array divided by the
reduction factor. On the next run, we divide our previous
step again by the reduction factor and it will be a new step.
This will continue until the step becomes equal 1, that's

First of all, let’s note a few points.

1. Since the speed (time) and the number of runs
and iterations (permutations) of each of the algorithms
are investigated, all algorithms were partially modified by
several variables for such tracking. The traditional sorting
criterion was chosen — by growth.

2. For better comparison, arrays of different dimen-
sions were used: 10, 100, 500, 1000, 2000, 5000 and
10000 elements.

3. After each program code execution the program
cache was cleaned to prevent inaccurate indicators.

4. The arrays were filled with random numbers gen-
erated using the corresponding function rand(). The same
sequence of randomly generated numbers was generated
every time with the help of this function. This made it pos-
sible to fairly evaluate each of the methods.

Let's present the results of the research.

1. Let’s consider the indicators of an unordered array
and analyze them.

Indicators of time, number of runs and iterations of
“bubble”, cocktail sort , “odd-even”, “comb”, selection,
insertion sorting algorithms for unordered array are pre-
sented in tables 1-6, respectively.

mean neighbouring elements. Table 1
5) Selection sort is a sim- “Bubble” sort algorithm, unordered array indicators
ple sorting algorithm based Number of
on insertions, that is, a certain elements
element (the smallest or larg- 10 100 500 1000 2000 5000 10000
est element of the array) is se- ~[Measure-
lected and inserted into the ap- Irgirglr;:?gsf
proprlat.e p!ace in the array (at | 10 100 500 1000 2000 5000 10000
thﬁ,blfg(linnmgd or at }t]he end), |Time (insec) | 0.001 | 0.0011 | 0.0015 | 0.0027 | 0.0071 | 0.0373 | 0.1516
which depends on the speci- [Number of 24952
fied criterion. This continues |iterations 13 2360 62420 | 248 145 1 1007742 | 6175 385 888
until the array is sorted. Table 2
6) Insertion sort is a Cocktail sort algorithm, unordered array indicators
comparison-based algorithm. TS
The essence of the algorithm zi:nf;n(is
is that at first we consider that 10 100 500 1000 2000 5000 10000
the first element is in its place. |Measure-
We compare the second with |ment results
the first and change places as |Number of 5 50 250 500 1000 2500 5000
necessary. If not, then we be- |Tuns
lieve that it is in its place. We Time (in sec) | 0.0008 | 0.0009 | 0.0014 | 0.0025 0.0068 0.0359 0.1439
compare the next one with the }f;‘;?:;:f 13 | 2360 | 62420 | 248 145 | 1007 742 | 6 175385 | 24 952 888
correct elements and include it T3
in the right place in the array. abte
So the algorithm will work un- “Odd-even” sort algorithm, unordered array indicators
til the array runs out. The re- Number of
sult is a sorted array. elements
10 100 500 1000 2000 5000 10000

. The authors chose . the Measire:
sgrtlng falgorlthmsil . described || ont results
above for researching arrays |[Number of
of different data ordering |runs 4 46 247 489 79 2473 4989
types: unordered, almost or- |Time (insec) | 0.0009 0.0011 | 0.0013 | 0.0024 0.0049 0.0246 0.094
dered, and reverse-ordered. g;ﬁ:;;’f 13 2360 | 62420 | 248 145 | 1007 742 |6 175 385 | 24 952 888

77

Po3din 3. [MoedHarnHs 3HaHHEBUX [yughpoBux mexHonoeail

Table 4 From Fig. 2 we visually
Comb sort algorithm, unordered array indicators observe the gradation of time
N to sort an increasing number
mber o of elements. We can see that
elements « ’ X
10 100 500 1000 2000 5000 10000 bubble” and cocktail sort on
Measure- large arrays are very slow,
ment results while comb sort takes almost
Number of . 17 24 8 3 35 39 no time at all. '
uns The four algorithms
Tlmeb(m s;:c) 0.0008 | 0.0009 | 0.00I | 0.001 | 0.0012 | 0.0015 | 0.0018 showed themselves exactly
Number o 7 246 | 1809 | 4369 | 9746 | 27189 | 59136 the same according to the it-
1terations .
Toble S erations number. These are:
ante “bubble” sorting, cocktail sort
Selection sort algorithm, unordered array indicators algorithm, “odd-even” and in-
Number of sertion. Fewer iterations are
elements needed for comb sorting. The
10 100 500 1000 2000 5000 10000 smallest number uses the se-
Measure- lection sort algorithm.
ment results 2 Let ider the indi
Number of . Let’s consider the indi-
runs 9 99 499 999 1999 4999 9999 cators of an almost ordered ar-
Time (in sec) | 0.0009 0.001 0.0011 | 0.0016 | 0.0032 | 0.0147 0.0533 ray and perform their analysis.
Number of 7 92 488 | 994 | 1993 | 4987 9992 An almost ordered array
1terations :
Tobleg S an amay that already has
a sorted elements. Therefore, el-
Insertion sort algorithm, unordered array indicators ement generation was divided
Number of into two cycles. The first com-
elements posed consecutive numbers
10 100 500 1000 2000 5000 10000 in half of the array, the other
Measure- half — randomly generated
Eem Lesultsf numbers.
O 9 99 | 499 999 1999 4999 9999 The relevant indicators of
Time (in sec) | 0.0009 | 0.001 | 0.0011 | 0.0015 | 0.0025 | 0.0102 | 00372 | the time, number of runs and
Number of iterations of the sorting algo-
iterations 13 2360 | 62420 | 248145 | 1007 742 | 6 175 385 | 24 952 888 rithms by “bubble”, cocktail

The operation of various sorting algorithms for an
unordered array type is shown in Fig. / (number of runs)
and Fig. 2 (time).

From Fig. I we can see that three algorithms out of
six performed equally with a large number of runs. These
are: “bubble” sorting, selection and insertion sort algo-
rithms. Two algorithms out of six: cocktail sort and “odd-
even” sorting performed moderately. The least number of
runs is observed in the comb sorting algorithm.

RUNS

Bubble Cocktadl Odd-
sort ot even st
ot

Comb Sehection insertion
st sort

w10 elemenis u 100 slaments w500 elements m 1000 elements

=2000 slements @ 5000 siements W 10000 slemants

Fig. 1. Indicators of runs for different sorting methods
of unordered array

78

9

sort, “odd-even”, “comb”, se-
lection and insertion for an almost ordered array are ob-
tained and entered in the corresponding tables.

TIME

10 elements 100 elements 500 elements 1000 elements 2000 elements 5000 eaewentia 10000 slements|

Bubble sort o Odd

207 s (AT S0F T s ST HON 507 T e INSETTION SOME

Fig. 2. Indicators of times for different sorting methods
of unordered array

In order not to burden the article visually, we don’t
present such tables, but we present the results using ap-
propriate diagrams (Fig. 3-4).

We can see from the diagram in Fig. 3, that there are
no changes in the number of runs, although half of the ele-
ments are sorted in this type of array.

In Fig. 4 we visually observe the gradation of time
with the help of a graph in order to sort more and more
elements. Compared to the previous graph (Fig. 2), we can
see that the cocktail sort and insertion algorithms take half
the time to sort an almost ordered array.

8 3a06e3neqerHi AKkicHO20 HaBYaHHS axiBus i3uKO-MeXHON02/4HO20 NPOinto

RUNS

Bubtie Cockteil Odd-even Combsort Seection nsertion
sort sort son sor Sort

= 10 siements w 100 elements = 500 slements w 1000 siements = 2000 sierments = 5000 ersserTise 10000 slements

Fig. 3. Indicators of runs for different sorting methods
of almost ordered array

TIME
0,14
012
01
0,08
[+
0,04
0,02
n _-=..‘.-.".-
10 100 500 1000 5000 10000
enementia elements
Bk it S e i
—COMb SOCT — SESCTION SOFT s iNSArTiOn sort

RUNS

10000

7000
B000

10000 elements
5000 eaemenTio
2000 elements

1000 edements

500 siements

100 siements

10 mismerts

3000
2000

Bubbie Cocitall Odd-even Comb sort Selection Insertion
sort son sort sort sort

w10 elements ® 100 elements = 500 etements w 1000 elements = 2000 slements » 5000 eaemerTism 10000 slements

Fig. 5. Indicators of runs for different sorting methods
of reverse-ordered array

TIME

025

02

g1s

0,05

10 slemeres 100 slements 500 elements 1000 siements 2000

w— Comib ST on sort Irsertic

Fig. 4. Indicators of times for different sorting methods
of almost ordered array

According to the number of iterations, the algorithms
showed themselves in the same way as for the ordered ar-
ray. Although in the four algorithms that act in the same
way, three times less permutations are made.

3. Let’s consider the indicators of reverse-ordered
array and perform their analysis. Reverse-ordered array —
array sorted in reverse. For some sorting methods, this is
the worst case, because more permutations will have to
be done.

The size of the array was used to generate the ele-
ments, which gradually decreased depending on its index.

The relevant indicators of the time, number of runs
and iterations of the sorting algorithms by “bubble”, cock-
tail sort, “odd-even”, “comb”, selection and insertion for
reverse-ordered array are obtained and entered in the cor-
responding tables.

In order not to burden the article visually, we don’t
present such tables, but we present the results using ap-
propriate diagrams (Fig. 5-6).

We can see the number of runs that were needed to
sort the reverse-ordered array on the diagram (Fig. 5). We
do not observe significant changes.

In Fig. 6 we visually observe the gradation of time
with the help of a graph in order to sort more and more
elements. We can note that each of the sorting algorithms
takes more time to implement, except for the “comb” al-
gorithm, which remained unchanged. It is also interesting
that for unordered and almost ordered arrays, the cock-
tail sort and insertion sort algorithms took more time than
“bubble” and selection sort, respectively.

Fig. 6. Indicators of times for different sorting methods
of reverse-ordered array

As for iterations, almost every method increased the
number of permutations. The number of iterations in the
selection sort algorithm increased insignificantly. In the
“comb” sorting algorithm, the number of permutations
decreased by about 2.7 times. The number of iterations in
the remaining four algorithms is twice as large.

As for the run analysis, we are talking about compar-
ing how many repetitions a particular algorithm needed to
sort the array.

We count the run as repeating the operation of read-
ing elements from the first element. We also take into ac-
count a control run that checks whether the array is sorted.

The “bubble” sorting algorithm needed the largest
number of runs. This is natural, since only one element
is put in its place in one run. Different array ordering type
does not matter.

Following the “bubble”, the sorting algorithms by
selection and insertion sort have the same number of runs.
Only one less than in the “bubble” algorithm. This is be-
cause these algorithms are based on finding an element
that is put into place in one pass. And we believe at the
beginning, that one element is already in its place without
running.

The cocktail sort algorithm needs half as many runs
as its predecessors. Such indicators are because in one run
the algorithm read array twice: from beginning to end and
from end to beginning.

The “odd-even” sorting algorithm is one of those
algorithms for which the number of runs depends on the
ordering type. The lowest number of runs is observed for
almost ordered array.

79

Po3din 3. [MoedHarnHs 3HaHHEBUX [yughpoBux mexHonoeail

The least number of runs is observed in the “comb”
sorting algorithm. The algorithm showed the same number
of runs for all three types of arrays ordering, but for the
revers-ordered array, starting with two thousand elements,
one run less was performed. The algorithm performed
1.4 views per run with ten elements and 256.4 views with
ten thousand elements.

Thus, the best in terms of the number of runs is the
“comb” sorting algorithm among all the considered sort-
ing algorithms.

As for the time analysis. It is important to note that
time is measured in seconds and that the values are too
small to show graphically. Because of this, we will com-
pare them using the arithmetic average of each method.

The “bubble” sorting algorithm turned out to be the
slowest of all algorithms. The best performance of the
execution time is shown in the almost ordered array —
0.0247 sec, the average indicator is in unordered array
with value 0.0289 sec, and the worst indicator is in revers-
ordered array — 0.0346 sec.

Next, according to the indicators, the cocktail sort al-
gorithm. Although it shows the worst result — 0.04 sec in re-
verse-ordered array, but in almost ordered array the average
sorting execution time is 0.0162 sec. In an unordered array,
the indicator does not differ significantly from the “bubble”
sorting algorithm — 0.0275 sec. This algorithm is not stable
with respect to different types of arrays ordering.

As for the “odd-even” sorting algorithm, the best
result was obtained for an almost ordered array with an
indicator of 0.0138 sec. The worst — 0.0244 sec — for the
reverse- ordered array.

One of the most stable was the selection sorting al-
gorithm. We got the worst result for the reverse-ordered
array (0.0132 sec), the best is for an almost ordered array
(0.106 sec).

The insertion sort algorithm was found to be faster
than the selection sort algorithm for different array types.
For an unordered array — 0.0078 sec, for almost orderly —
0.0032 sec. The worst indicator is in the reverse-ordered
array — 0.0138 sec.

The “comb” sorting algorithm turned out to be
the most stable and the fastest. It has a stable indicator
(0.0012 sec) in two types of array ordering: almost or-
dered and unordered arrays. The best time for a reverse-
ordered array is 0.001 sec.

As for iterations, the four algorithms performed ex-
actly the same for all types of array ordering. These are
sorting algorithms by “bubble”, cocktail sort algorithm,
“odd-even”, selection and insertion. The same number of
permutations is performed in these algorithms, and this
number is one of the largest.

The “comb” sorting algorithm performed much bet-
ter than other algorithms, but the selection sorting algo-
rithm has the lowest number of iterations.

Conclusions. A comparative analysis of six differ-
ent sorting algorithms was done: “bubble”, cocktail sort
algorithm, “odd-even”, “comb”, selection and insertion
for different types of arrays ordering: unordered, almost
ordered, reverse-ordered.

By the volume of the software code, these algorithms
can be divided from the smallest to the largest as follows:

80

sorting by “bubble” and insertion, cocktail sort algorithm
and selection, “odd-even”, “comb”. The most self-explan-
atory algorithms for beginners are, of course, “bubble” and
cocktail sort algorithm, and “odd-even”. They are simple
to implement and easy to master the principles of sorting.
Insertion and selection sorting methods can be used to ex-
plain the principle of element memorization. These methods
are also optimal for small sizes arrays. The most difficult
to understand is the “comb” method, because it uses a step
variable that must be calculated. But this ordering algorithm
showed itself in the best way: it does not perform many runs,
that's why it is the fastest of all considered algorithms (aver-
age speed is 0.0012 sec). This algorithm is optimal for any
array type with a large number of elements.

References:

1. Wirt Niklaus. Algorithms and data structures: trans. with
English. Kyiv: DMK Press, 2016. 272 p.

2. Krenevich A.P. Algorithms and data structures. Textbook.
Kyiv: VOC “Kyiv University”, 2021. 200 p. URL:
http://www.mechmat.univ.kiev.ua/wp-content/up-
loads/2021/09/pidruchnyk-alhorytmy-i-struktury-dan-
ykh.pdf

3. Kuzmenko LM., Datsyuk O.A. Basic algorithms
and data structures : teaching. manual. Kyiv: Igor
Sikorsky KPI, 2022. 137 p. URL: https://ela.kpi.ua/bit-
stream/123456789/48256/1/Bazovi.pdf

T. M. [Tnauniok, B. C. CykmaHiok

Kam saueywv-Ilooinbcwkuil Hayionanvruil yHigepcumem
imeni leana Oczienka

BUBYEHHA AJITOPUTMIB COPTYBAHHSA
IHOOPMALIIL B MACUBAX PIBHUX THUIIIB

CrarTst MPUCBSUCHA AOCIIIKSHHIO aJITOPUTMIB COP-
TYBaHHsI JUIsl PI3HOTO THITYy BIOPSAKOBAHOCTI MAaCHBIB:
HEBIOPSIKOBAaHNX, MaiKe BIOPSIKOBAHUX, OOCPHEHO
BIOPSAKOBAHUX.

VY cTarTi chopMyITBOBAHO IOCTAHOBKY 3a1a4i COPTY-
BaHHS Ta MOJAHO 1 MaTeMaTHYHY OCHOBY.

ABTOpH pPO3DJISIHYJIM JICKUIbKa TIOMYJSPHHUX al-
TOPUTMIB COPTYBaHHSA MacuBiB iHpopmamii Ta iX Mo-
madikamiil: copryBaHHS «Oynb0aIIKOI0», COPTYBAaHHS
«TapHe-HerapHe», COPTyBaHHS «rpebiHIeM», BCTaBKa-
MH, BKIIFOYCHHSIM, BUOOPOM; MOJATT KOPOTKY XapaKTe-
PHUCTHKY OOpaHMX aJITOPUTMIB AJIS KPALIOTO PO3YyMiHHS
TIPUHITHITY X POOOTH; IIPOBENN TOCIIKEHHS 3aCTOCOB-
HOCTI IIMX aJTOPUTMIB AJS PI3HOTO TUILy BIIOPSIKOBA-
HOCTI MacHBIB Ta 3IiHCHIIN 1X OPIBHSUIbHUN aHAT3 3a
MIBUIKOJI€F0, KUTBKICTIO MTPOOITiB Ta iTeparrii.

Jlns Kpamoro NopiBHSHHS BUKOPUCTAHO Pi3HY pO3-
MipHicth MacuBiB: 10, 100, 500, 1000, 2000, 5000 Ta
10000 enemenTiB. MacuBH 3alIOBHIOBAINCS BHIIAIKOBH-
MU YHCJIaMU, SKi TeHEPYBAJHCS 3a JOMOMOTOIO BiIIO-
BiZiHOI (pyHKUI, 110 JO3BOJIMJIO CIPABEIMBO OL[IHIOBA-
TH KOXKHUIT 3 anroput™iB. Kpurepiit copryBanHs o6paHo
TpaJuLiHHUHN — 32 3pOCTAHHSAM.

Takoxx 3MiHCHEHO MOPIBHSUIBHHUN aHAIi3 3aCTOCOB-
HOCTI TOTO YH 1HILIOTO aNTOPUTMY JAJISI Pi3HOTO TUITY BIIO-
PSIKOBAHOCTI MOYATKOBUX (BXITHUX) NaHHUX. 3poOIeHO
BIJITOBIIHI BUCHOBKH.

KorouoBi cioBa: MacuB, aJTOpuUTM, BHOPSAKOBA-
HICTb, BUIIQJKOBI YMCIIA, MIBUAKOMIA, MPOOIr, iTepamis,
COPTYBaHHS.

Ompumano: 19.11.2022

